3.4.83 \(\int \frac {\sqrt {\cos (c+d x)}}{(a+a \sec (c+d x))^2} \, dx\) [383]

Optimal. Leaf size=112 \[ \frac {4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac {5 \sin (c+d x)}{3 a^2 d \sqrt {\cos (c+d x)} (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2} \]

[Out]

4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-5/3*(cos(1/2*d*x
+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-5/3*sin(d*x+c)/a^2/d/(1+sec(d*
x+c))/cos(d*x+c)^(1/2)-1/3*sin(d*x+c)/d/(a+a*sec(d*x+c))^2/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {4349, 3902, 4105, 3872, 3856, 2719, 2720} \begin {gather*} -\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {5 \sin (c+d x)}{3 a^2 d \sqrt {\cos (c+d x)} (\sec (c+d x)+1)}-\frac {\sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]/(a + a*Sec[c + d*x])^2,x]

[Out]

(4*EllipticE[(c + d*x)/2, 2])/(a^2*d) - (5*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) - (5*Sin[c + d*x])/(3*a^2*d*Sq
rt[Cos[c + d*x]]*(1 + Sec[c + d*x])) - Sin[c + d*x]/(3*d*Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3902

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[
e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(2*m + 1))), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*C
sc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b,
 d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])

Rule 4105

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*
(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[
A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {\cos (c+d x)}}{(a+a \sec (c+d x))^2} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \, dx\\ &=-\frac {\sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {7 a}{2}+\frac {3}{2} a \sec (c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx}{3 a^2}\\ &=-\frac {5 \sin (c+d x)}{3 a^2 d \sqrt {\cos (c+d x)} (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-6 a^2+\frac {5}{2} a^2 \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{3 a^4}\\ &=-\frac {5 \sin (c+d x)}{3 a^2 d \sqrt {\cos (c+d x)} (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2}-\frac {\left (5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx}{6 a^2}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{a^2}\\ &=-\frac {5 \sin (c+d x)}{3 a^2 d \sqrt {\cos (c+d x)} (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2}-\frac {5 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2}+\frac {2 \int \sqrt {\cos (c+d x)} \, dx}{a^2}\\ &=\frac {4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac {5 \sin (c+d x)}{3 a^2 d \sqrt {\cos (c+d x)} (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 6.18, size = 374, normalized size = 3.34 \begin {gather*} \frac {4 i \sqrt {2} e^{-i (c+d x)} \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (12 \left (1+e^{2 i (c+d x)}\right )+12 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )+5 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right )\right ) \sec ^2(c+d x)}{3 d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} (a+a \sec (c+d x))^2}+\frac {\cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {8 \cot \left (\frac {c}{2}\right )}{d}-\frac {8 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{d}+\frac {2 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{3 d}+\frac {2 \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]/(a + a*Sec[c + d*x])^2,x]

[Out]

(((4*I)/3)*Sqrt[2]*Cos[c/2 + (d*x)/2]^4*(12*(1 + E^((2*I)*(c + d*x))) + 12*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I
)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 5*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*S
qrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))])*Sec[c + d*x]^2)/(d*E^(I*(
c + d*x))*(-1 + E^((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*(a + a*Sec[c + d*x])^2) + (Cos[c/
2 + (d*x)/2]^4*((-8*Cot[c/2])/d - (8*Sec[c/2]*Sec[c/2 + (d*x)/2]*Sin[(d*x)/2])/d + (2*Sec[c/2]*Sec[c/2 + (d*x)
/2]^3*Sin[(d*x)/2])/(3*d) + (2*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(3*d)))/(Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])
^2)

________________________________________________________________________________________

Maple [A]
time = 0.10, size = 257, normalized size = 2.29

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (24 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+10 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-38 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+15 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}{6 a^{2} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(257\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(24*cos(1/2*d*x+1/2*c)^6+10*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+24*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^3*EllipticE(cos(1/2*d*x+1/2*c),2^(1
/2))-38*cos(1/2*d*x+1/2*c)^4+15*cos(1/2*d*x+1/2*c)^2-1)/a^2/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/
2)/cos(1/2*d*x+1/2*c)^3/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(sqrt(cos(d*x + c))/(a*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 1.26, size = 268, normalized size = 2.39 \begin {gather*} -\frac {2 \, {\left (6 \, \cos \left (d x + c\right ) + 5\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 5 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 12 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 12 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/6*(2*(6*cos(d*x + c) + 5)*sqrt(cos(d*x + c))*sin(d*x + c) + 5*(-I*sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(
d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*(I*sqrt(2)*cos(d*x + c)^2
+ 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 12*(-I*sqr
t(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0,
cos(d*x + c) + I*sin(d*x + c))) + 12*(I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierst
rassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*co
s(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {\sqrt {\cos {\left (c + d x \right )}}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)/(a+a*sec(d*x+c))**2,x)

[Out]

Integral(sqrt(cos(c + d*x))/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x)/a**2

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sqrt(cos(d*x + c))/(a*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {\cos \left (c+d\,x\right )}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(1/2)/(a + a/cos(c + d*x))^2,x)

[Out]

int(cos(c + d*x)^(1/2)/(a + a/cos(c + d*x))^2, x)

________________________________________________________________________________________